3.9.31 \(\int \frac {a+b x+c x^2}{(d+e x)^2 (f+g x)^{3/2}} \, dx\) [831]

Optimal. Leaf size=165 \[ -\frac {2 \left (c f^2-b f g+a g^2\right )}{g (e f-d g)^2 \sqrt {f+g x}}-\frac {\left (c d^2-b d e+a e^2\right ) \sqrt {f+g x}}{e (e f-d g)^2 (d+e x)}+\frac {(c d (4 e f-d g)-e (2 b e f+b d g-3 a e g)) \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{e^{3/2} (e f-d g)^{5/2}} \]

[Out]

(c*d*(-d*g+4*e*f)-e*(-3*a*e*g+b*d*g+2*b*e*f))*arctanh(e^(1/2)*(g*x+f)^(1/2)/(-d*g+e*f)^(1/2))/e^(3/2)/(-d*g+e*
f)^(5/2)-2*(a*g^2-b*f*g+c*f^2)/g/(-d*g+e*f)^2/(g*x+f)^(1/2)-(a*e^2-b*d*e+c*d^2)*(g*x+f)^(1/2)/e/(-d*g+e*f)^2/(
e*x+d)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {911, 1273, 464, 214} \begin {gather*} -\frac {\sqrt {f+g x} \left (a e^2-b d e+c d^2\right )}{e (d+e x) (e f-d g)^2}+\frac {\tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) (c d (4 e f-d g)-e (-3 a e g+b d g+2 b e f))}{e^{3/2} (e f-d g)^{5/2}}-\frac {2 \left (a g^2-b f g+c f^2\right )}{g \sqrt {f+g x} (e f-d g)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x + c*x^2)/((d + e*x)^2*(f + g*x)^(3/2)),x]

[Out]

(-2*(c*f^2 - b*f*g + a*g^2))/(g*(e*f - d*g)^2*Sqrt[f + g*x]) - ((c*d^2 - b*d*e + a*e^2)*Sqrt[f + g*x])/(e*(e*f
 - d*g)^2*(d + e*x)) + ((c*d*(4*e*f - d*g) - e*(2*b*e*f + b*d*g - 3*a*e*g))*ArcTanh[(Sqrt[e]*Sqrt[f + g*x])/Sq
rt[e*f - d*g]])/(e^(3/2)*(e*f - d*g)^(5/2))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 464

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 911

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{q = Denominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + g*(x^q/e))^n*((c*d^2 - b*d
*e + a*e^2)/e^2 - (2*c*d - b*e)*(x^q/e^2) + c*(x^(2*q)/e^2))^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegersQ[n,
 p] && FractionQ[m]

Rule 1273

Int[(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(-d)^(m
/2 - 1)*(c*d^2 - b*d*e + a*e^2)^p*x*((d + e*x^2)^(q + 1)/(2*e^(2*p + m/2)*(q + 1))), x] + Dist[(-d)^(m/2 - 1)/
(2*e^(2*p)*(q + 1)), Int[x^m*(d + e*x^2)^(q + 1)*ExpandToSum[Together[(1/(d + e*x^2))*(2*(-d)^(-m/2 + 1)*e^(2*
p)*(q + 1)*(a + b*x^2 + c*x^4)^p - ((c*d^2 - b*d*e + a*e^2)^p/(e^(m/2)*x^m))*(d + e*(2*q + 3)*x^2))], x], x],
x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && ILtQ[q, -1] && ILtQ[m/2, 0]

Rubi steps

\begin {align*} \int \frac {a+b x+c x^2}{(d+e x)^2 (f+g x)^{3/2}} \, dx &=\frac {2 \text {Subst}\left (\int \frac {\frac {c f^2-b f g+a g^2}{g^2}-\frac {(2 c f-b g) x^2}{g^2}+\frac {c x^4}{g^2}}{x^2 \left (\frac {-e f+d g}{g}+\frac {e x^2}{g}\right )^2} \, dx,x,\sqrt {f+g x}\right )}{g}\\ &=-\frac {\left (c d^2-b d e+a e^2\right ) \sqrt {f+g x}}{e (e f-d g)^2 (d+e x)}-\frac {g^3 \text {Subst}\left (\int \frac {\frac {2 e^2 (e f-d g) \left (c f^2-b f g+a g^2\right )}{g^5}-\frac {e \left (e (b d-a e) g^2+c \left (2 e^2 f^2-4 d e f g+d^2 g^2\right )\right ) x^2}{g^5}}{x^2 \left (\frac {-e f+d g}{g}+\frac {e x^2}{g}\right )} \, dx,x,\sqrt {f+g x}\right )}{e^2 (e f-d g)^2}\\ &=-\frac {2 \left (c f^2-b f g+a g^2\right )}{g (e f-d g)^2 \sqrt {f+g x}}-\frac {\left (c d^2-b d e+a e^2\right ) \sqrt {f+g x}}{e (e f-d g)^2 (d+e x)}-\frac {(c d (4 e f-d g)-e (2 b e f+b d g-3 a e g)) \text {Subst}\left (\int \frac {1}{\frac {-e f+d g}{g}+\frac {e x^2}{g}} \, dx,x,\sqrt {f+g x}\right )}{e g (e f-d g)^2}\\ &=-\frac {2 \left (c f^2-b f g+a g^2\right )}{g (e f-d g)^2 \sqrt {f+g x}}-\frac {\left (c d^2-b d e+a e^2\right ) \sqrt {f+g x}}{e (e f-d g)^2 (d+e x)}+\frac {(c d (4 e f-d g)-e (2 b e f+b d g-3 a e g)) \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{e^{3/2} (e f-d g)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.65, size = 176, normalized size = 1.07 \begin {gather*} \frac {-c \left (2 d e f^2+2 e^2 f^2 x+d^2 g (f+g x)\right )+e g (b (3 d f+2 e f x+d g x)-a (e f+2 d g+3 e g x))}{e g (e f-d g)^2 (d+e x) \sqrt {f+g x}}+\frac {(c d (-4 e f+d g)+e (2 b e f+b d g-3 a e g)) \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {-e f+d g}}\right )}{e^{3/2} (-e f+d g)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x + c*x^2)/((d + e*x)^2*(f + g*x)^(3/2)),x]

[Out]

(-(c*(2*d*e*f^2 + 2*e^2*f^2*x + d^2*g*(f + g*x))) + e*g*(b*(3*d*f + 2*e*f*x + d*g*x) - a*(e*f + 2*d*g + 3*e*g*
x)))/(e*g*(e*f - d*g)^2*(d + e*x)*Sqrt[f + g*x]) + ((c*d*(-4*e*f + d*g) + e*(2*b*e*f + b*d*g - 3*a*e*g))*ArcTa
n[(Sqrt[e]*Sqrt[f + g*x])/Sqrt[-(e*f) + d*g]])/(e^(3/2)*(-(e*f) + d*g)^(5/2))

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 175, normalized size = 1.06

method result size
derivativedivides \(\frac {-\frac {2 g \left (\frac {g \left (a \,e^{2}-b d e +c \,d^{2}\right ) \sqrt {g x +f}}{2 e \left (e \left (g x +f \right )+d g -e f \right )}+\frac {\left (3 a \,e^{2} g -b d e g -2 b \,e^{2} f -c \,d^{2} g +4 c d e f \right ) \arctan \left (\frac {e \sqrt {g x +f}}{\sqrt {\left (d g -e f \right ) e}}\right )}{2 e \sqrt {\left (d g -e f \right ) e}}\right )}{\left (d g -e f \right )^{2}}-\frac {2 \left (a \,g^{2}-b f g +c \,f^{2}\right )}{\left (d g -e f \right )^{2} \sqrt {g x +f}}}{g}\) \(175\)
default \(\frac {-\frac {2 g \left (\frac {g \left (a \,e^{2}-b d e +c \,d^{2}\right ) \sqrt {g x +f}}{2 e \left (e \left (g x +f \right )+d g -e f \right )}+\frac {\left (3 a \,e^{2} g -b d e g -2 b \,e^{2} f -c \,d^{2} g +4 c d e f \right ) \arctan \left (\frac {e \sqrt {g x +f}}{\sqrt {\left (d g -e f \right ) e}}\right )}{2 e \sqrt {\left (d g -e f \right ) e}}\right )}{\left (d g -e f \right )^{2}}-\frac {2 \left (a \,g^{2}-b f g +c \,f^{2}\right )}{\left (d g -e f \right )^{2} \sqrt {g x +f}}}{g}\) \(175\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)/(e*x+d)^2/(g*x+f)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/g*(-g/(d*g-e*f)^2*(1/2*g*(a*e^2-b*d*e+c*d^2)/e*(g*x+f)^(1/2)/(e*(g*x+f)+d*g-e*f)+1/2*(3*a*e^2*g-b*d*e*g-2*b*
e^2*f-c*d^2*g+4*c*d*e*f)/e/((d*g-e*f)*e)^(1/2)*arctan(e*(g*x+f)^(1/2)/((d*g-e*f)*e)^(1/2)))-(a*g^2-b*f*g+c*f^2
)/(d*g-e*f)^2/(g*x+f)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)/(e*x+d)^2/(g*x+f)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*%e^2*f-4*%e*d*g>0)', see `as
sume?` for m

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 547 vs. \(2 (156) = 312\).
time = 12.16, size = 1110, normalized size = 6.73 \begin {gather*} \left [-\frac {{\left (c d^{3} g^{3} x + c d^{3} f g^{2} + {\left ({\left (2 \, b f g^{2} - 3 \, a g^{3}\right )} x^{2} + {\left (2 \, b f^{2} g - 3 \, a f g^{2}\right )} x\right )} e^{3} + {\left (2 \, b d f^{2} g - 3 \, a d f g^{2} - {\left (4 \, c d f g^{2} - b d g^{3}\right )} x^{2} - {\left (4 \, c d f^{2} g - 3 \, b d f g^{2} + 3 \, a d g^{3}\right )} x\right )} e^{2} + {\left (c d^{2} g^{3} x^{2} - 4 \, c d^{2} f^{2} g + b d^{2} f g^{2} - {\left (3 \, c d^{2} f g^{2} - b d^{2} g^{3}\right )} x\right )} e\right )} \sqrt {-d g e + f e^{2}} \log \left (-\frac {d g - {\left (g x + 2 \, f\right )} e - 2 \, \sqrt {-d g e + f e^{2}} \sqrt {g x + f}}{x e + d}\right ) + 2 \, \sqrt {g x + f} {\left ({\left (a f^{2} g + {\left (2 \, c f^{3} - 2 \, b f^{2} g + 3 \, a f g^{2}\right )} x\right )} e^{4} + {\left (2 \, c d f^{3} - 3 \, b d f^{2} g + a d f g^{2} - {\left (2 \, c d f^{2} g - b d f g^{2} + 3 \, a d g^{3}\right )} x\right )} e^{3} - {\left (c d^{2} f^{2} g - 3 \, b d^{2} f g^{2} + 2 \, a d^{2} g^{3} - {\left (c d^{2} f g^{2} + b d^{2} g^{3}\right )} x\right )} e^{2} - {\left (c d^{3} g^{3} x + c d^{3} f g^{2}\right )} e\right )}}{2 \, {\left ({\left (f^{3} g^{2} x^{2} + f^{4} g x\right )} e^{6} - {\left (3 \, d f^{2} g^{3} x^{2} + 2 \, d f^{3} g^{2} x - d f^{4} g\right )} e^{5} + 3 \, {\left (d^{2} f g^{4} x^{2} - d^{2} f^{3} g^{2}\right )} e^{4} - {\left (d^{3} g^{5} x^{2} - 2 \, d^{3} f g^{4} x - 3 \, d^{3} f^{2} g^{3}\right )} e^{3} - {\left (d^{4} g^{5} x + d^{4} f g^{4}\right )} e^{2}\right )}}, \frac {{\left (c d^{3} g^{3} x + c d^{3} f g^{2} + {\left ({\left (2 \, b f g^{2} - 3 \, a g^{3}\right )} x^{2} + {\left (2 \, b f^{2} g - 3 \, a f g^{2}\right )} x\right )} e^{3} + {\left (2 \, b d f^{2} g - 3 \, a d f g^{2} - {\left (4 \, c d f g^{2} - b d g^{3}\right )} x^{2} - {\left (4 \, c d f^{2} g - 3 \, b d f g^{2} + 3 \, a d g^{3}\right )} x\right )} e^{2} + {\left (c d^{2} g^{3} x^{2} - 4 \, c d^{2} f^{2} g + b d^{2} f g^{2} - {\left (3 \, c d^{2} f g^{2} - b d^{2} g^{3}\right )} x\right )} e\right )} \sqrt {d g e - f e^{2}} \arctan \left (-\frac {\sqrt {d g e - f e^{2}} \sqrt {g x + f}}{d g - f e}\right ) - \sqrt {g x + f} {\left ({\left (a f^{2} g + {\left (2 \, c f^{3} - 2 \, b f^{2} g + 3 \, a f g^{2}\right )} x\right )} e^{4} + {\left (2 \, c d f^{3} - 3 \, b d f^{2} g + a d f g^{2} - {\left (2 \, c d f^{2} g - b d f g^{2} + 3 \, a d g^{3}\right )} x\right )} e^{3} - {\left (c d^{2} f^{2} g - 3 \, b d^{2} f g^{2} + 2 \, a d^{2} g^{3} - {\left (c d^{2} f g^{2} + b d^{2} g^{3}\right )} x\right )} e^{2} - {\left (c d^{3} g^{3} x + c d^{3} f g^{2}\right )} e\right )}}{{\left (f^{3} g^{2} x^{2} + f^{4} g x\right )} e^{6} - {\left (3 \, d f^{2} g^{3} x^{2} + 2 \, d f^{3} g^{2} x - d f^{4} g\right )} e^{5} + 3 \, {\left (d^{2} f g^{4} x^{2} - d^{2} f^{3} g^{2}\right )} e^{4} - {\left (d^{3} g^{5} x^{2} - 2 \, d^{3} f g^{4} x - 3 \, d^{3} f^{2} g^{3}\right )} e^{3} - {\left (d^{4} g^{5} x + d^{4} f g^{4}\right )} e^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)/(e*x+d)^2/(g*x+f)^(3/2),x, algorithm="fricas")

[Out]

[-1/2*((c*d^3*g^3*x + c*d^3*f*g^2 + ((2*b*f*g^2 - 3*a*g^3)*x^2 + (2*b*f^2*g - 3*a*f*g^2)*x)*e^3 + (2*b*d*f^2*g
 - 3*a*d*f*g^2 - (4*c*d*f*g^2 - b*d*g^3)*x^2 - (4*c*d*f^2*g - 3*b*d*f*g^2 + 3*a*d*g^3)*x)*e^2 + (c*d^2*g^3*x^2
 - 4*c*d^2*f^2*g + b*d^2*f*g^2 - (3*c*d^2*f*g^2 - b*d^2*g^3)*x)*e)*sqrt(-d*g*e + f*e^2)*log(-(d*g - (g*x + 2*f
)*e - 2*sqrt(-d*g*e + f*e^2)*sqrt(g*x + f))/(x*e + d)) + 2*sqrt(g*x + f)*((a*f^2*g + (2*c*f^3 - 2*b*f^2*g + 3*
a*f*g^2)*x)*e^4 + (2*c*d*f^3 - 3*b*d*f^2*g + a*d*f*g^2 - (2*c*d*f^2*g - b*d*f*g^2 + 3*a*d*g^3)*x)*e^3 - (c*d^2
*f^2*g - 3*b*d^2*f*g^2 + 2*a*d^2*g^3 - (c*d^2*f*g^2 + b*d^2*g^3)*x)*e^2 - (c*d^3*g^3*x + c*d^3*f*g^2)*e))/((f^
3*g^2*x^2 + f^4*g*x)*e^6 - (3*d*f^2*g^3*x^2 + 2*d*f^3*g^2*x - d*f^4*g)*e^5 + 3*(d^2*f*g^4*x^2 - d^2*f^3*g^2)*e
^4 - (d^3*g^5*x^2 - 2*d^3*f*g^4*x - 3*d^3*f^2*g^3)*e^3 - (d^4*g^5*x + d^4*f*g^4)*e^2), ((c*d^3*g^3*x + c*d^3*f
*g^2 + ((2*b*f*g^2 - 3*a*g^3)*x^2 + (2*b*f^2*g - 3*a*f*g^2)*x)*e^3 + (2*b*d*f^2*g - 3*a*d*f*g^2 - (4*c*d*f*g^2
 - b*d*g^3)*x^2 - (4*c*d*f^2*g - 3*b*d*f*g^2 + 3*a*d*g^3)*x)*e^2 + (c*d^2*g^3*x^2 - 4*c*d^2*f^2*g + b*d^2*f*g^
2 - (3*c*d^2*f*g^2 - b*d^2*g^3)*x)*e)*sqrt(d*g*e - f*e^2)*arctan(-sqrt(d*g*e - f*e^2)*sqrt(g*x + f)/(d*g - f*e
)) - sqrt(g*x + f)*((a*f^2*g + (2*c*f^3 - 2*b*f^2*g + 3*a*f*g^2)*x)*e^4 + (2*c*d*f^3 - 3*b*d*f^2*g + a*d*f*g^2
 - (2*c*d*f^2*g - b*d*f*g^2 + 3*a*d*g^3)*x)*e^3 - (c*d^2*f^2*g - 3*b*d^2*f*g^2 + 2*a*d^2*g^3 - (c*d^2*f*g^2 +
b*d^2*g^3)*x)*e^2 - (c*d^3*g^3*x + c*d^3*f*g^2)*e))/((f^3*g^2*x^2 + f^4*g*x)*e^6 - (3*d*f^2*g^3*x^2 + 2*d*f^3*
g^2*x - d*f^4*g)*e^5 + 3*(d^2*f*g^4*x^2 - d^2*f^3*g^2)*e^4 - (d^3*g^5*x^2 - 2*d^3*f*g^4*x - 3*d^3*f^2*g^3)*e^3
 - (d^4*g^5*x + d^4*f*g^4)*e^2)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)/(e*x+d)**2/(g*x+f)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 3.49, size = 282, normalized size = 1.71 \begin {gather*} \frac {{\left (c d^{2} g - 4 \, c d f e + b d g e + 2 \, b f e^{2} - 3 \, a g e^{2}\right )} \arctan \left (\frac {\sqrt {g x + f} e}{\sqrt {d g e - f e^{2}}}\right )}{{\left (d^{2} g^{2} e - 2 \, d f g e^{2} + f^{2} e^{3}\right )} \sqrt {d g e - f e^{2}}} - \frac {{\left (g x + f\right )} c d^{2} g^{2} + 2 \, c d f^{2} g e - {\left (g x + f\right )} b d g^{2} e - 2 \, b d f g^{2} e + 2 \, a d g^{3} e + 2 \, {\left (g x + f\right )} c f^{2} e^{2} - 2 \, c f^{3} e^{2} - 2 \, {\left (g x + f\right )} b f g e^{2} + 2 \, b f^{2} g e^{2} + 3 \, {\left (g x + f\right )} a g^{2} e^{2} - 2 \, a f g^{2} e^{2}}{{\left (d^{2} g^{3} e - 2 \, d f g^{2} e^{2} + f^{2} g e^{3}\right )} {\left (\sqrt {g x + f} d g + {\left (g x + f\right )}^{\frac {3}{2}} e - \sqrt {g x + f} f e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)/(e*x+d)^2/(g*x+f)^(3/2),x, algorithm="giac")

[Out]

(c*d^2*g - 4*c*d*f*e + b*d*g*e + 2*b*f*e^2 - 3*a*g*e^2)*arctan(sqrt(g*x + f)*e/sqrt(d*g*e - f*e^2))/((d^2*g^2*
e - 2*d*f*g*e^2 + f^2*e^3)*sqrt(d*g*e - f*e^2)) - ((g*x + f)*c*d^2*g^2 + 2*c*d*f^2*g*e - (g*x + f)*b*d*g^2*e -
 2*b*d*f*g^2*e + 2*a*d*g^3*e + 2*(g*x + f)*c*f^2*e^2 - 2*c*f^3*e^2 - 2*(g*x + f)*b*f*g*e^2 + 2*b*f^2*g*e^2 + 3
*(g*x + f)*a*g^2*e^2 - 2*a*f*g^2*e^2)/((d^2*g^3*e - 2*d*f*g^2*e^2 + f^2*g*e^3)*(sqrt(g*x + f)*d*g + (g*x + f)^
(3/2)*e - sqrt(g*x + f)*f*e))

________________________________________________________________________________________

Mupad [B]
time = 0.30, size = 218, normalized size = 1.32 \begin {gather*} \frac {\mathrm {atan}\left (\frac {\sqrt {f+g\,x}\,\left (d^2\,e\,g^2-2\,d\,e^2\,f\,g+e^3\,f^2\right )}{\sqrt {e}\,{\left (d\,g-e\,f\right )}^{5/2}}\right )\,\left (2\,b\,e^2\,f-3\,a\,e^2\,g+c\,d^2\,g+b\,d\,e\,g-4\,c\,d\,e\,f\right )}{e^{3/2}\,{\left (d\,g-e\,f\right )}^{5/2}}-\frac {\frac {2\,\left (c\,f^2-b\,f\,g+a\,g^2\right )}{d\,g-e\,f}+\frac {\left (f+g\,x\right )\,\left (c\,d^2\,g^2-b\,d\,e\,g^2+2\,c\,e^2\,f^2-2\,b\,e^2\,f\,g+3\,a\,e^2\,g^2\right )}{e\,{\left (d\,g-e\,f\right )}^2}}{\sqrt {f+g\,x}\,\left (d\,g^2-e\,f\,g\right )+e\,g\,{\left (f+g\,x\right )}^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)/((f + g*x)^(3/2)*(d + e*x)^2),x)

[Out]

(atan(((f + g*x)^(1/2)*(e^3*f^2 + d^2*e*g^2 - 2*d*e^2*f*g))/(e^(1/2)*(d*g - e*f)^(5/2)))*(2*b*e^2*f - 3*a*e^2*
g + c*d^2*g + b*d*e*g - 4*c*d*e*f))/(e^(3/2)*(d*g - e*f)^(5/2)) - ((2*(a*g^2 + c*f^2 - b*f*g))/(d*g - e*f) + (
(f + g*x)*(3*a*e^2*g^2 + c*d^2*g^2 + 2*c*e^2*f^2 - b*d*e*g^2 - 2*b*e^2*f*g))/(e*(d*g - e*f)^2))/((f + g*x)^(1/
2)*(d*g^2 - e*f*g) + e*g*(f + g*x)^(3/2))

________________________________________________________________________________________